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SOME EXACT SOLUTIONS OF THE PROBLEM OF THE HYPERSONIC
OR SUPERSONIC FLOW OF A GAS PAST A SLIPPING WING WITH
STALL FENCE

A, I. Golubinskiy and A. N. Ivanov

Construction of a class of three-dimensional configura-
tions representing a combination of a slipping or delta wing
‘and a stall fence mounted on the wing parallel to the oncom-
ing flow. It is shown that for such configurations, exact
solutions for hypersonic or supersonic flow can be obtained
without recourse to the small perturbation method. A solu-
tion for the flow past two intersecting yawing wings is ob-
tained as a special case. Flow analysis reveals strong inter-
ference at high speeds leading to much higher local pressures
than in the case of an isolated wing.

Individual examples of three-dimensional bodies are known for which it is /145%
possible to solve the flow problem, for example, bodies of star shaped (polygons)
cross section (refs. 1, 2) or bodies of revolution (cone, ellipsoid) at an angle
of attack, etc. The role of such individual solutions is significant for the
clarification of characteristic properties associated with the three-dimensional
flow around bodies.

The application of the hypersonic method of small perturbations (ref. 3)
which reduces the problem of three-dimensional flow to the problem of the non-
stationary gas flow in two dimensions, and also the utilization of one known
family of exact solutions of the plane problem concerning nonstationary motion
(ref. 4) make it possible to investigate the flow around a slipping wing with
an end fence at hypersonic velocities in some particular cases.

The present work constructs a wider class of three-dimensional bodies of
this type (the combination of a slipping or delta wing with an end fence, di-
rected parallel to the incident flow), for which it is possible to construct
simple exact solutions of the supersonic and hypersonic flow problem without
applying the method of small perturbations. In a particular case these solu-
tions are described by flow around 2 mutually intersecting slipping wings.

An example of flow around these bodies shows an interesting phenomena of
strong interference at large velocities when such interference produces local
pressures,which are considerable,in excess of pressures on the isolated wing.

1. Let us consider the flow over the region of a delta (or sweptback) wing
similar to the one shown in figure 1 at a supersonic velocity directed towards
the axis of the coordinates x.

*Numbers given in margin indicate pagination in original foreign text.
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g A plane fence ODF is installed at the end
of the wing, which is parallel to the incident
flow and inclined at an angle £ with respect to
the y axis., A profile of the wing has the shape
of a wedge with an angle § (along the normal to
the leading edge). The angle of the leading edge
OA with respect to the direction of the incident
flow is designated by «.

We shall attempt to find those geometric
relationships for the parameters o, &, € and those
Mach numbers of the flow for which the following
simple flow picture can exist for the wing: the
compression shock AOD, attached to the leading
edge falls on the fence DOF and after reflection
from this fence falls on the upper surface of the
wing at a right angle. Then the new reflection of
the shock does not occur and the entire flow pic-
ture can be computed by means of known relation-

! ships for oblique compression shocks. Figure 1.

We designate the normal flow component at the leading edge of the wing by

Mleuosina (1‘1)

For the compression shock which is attached to the wing, we have (ref. 5)

T My
ctg6=[ 5 Ml,sin,‘e_1 —1]tge\ (1.2)
were ¢ is the angle between the attached shock and the plane xz, y is the ratio
of the specific heats of the gas.
We designate by w; and wy respectively the angles between the incident /146

and the reflected shocks and the plane of the fence. It is easy to see that

~
et
(w0
s

®, = arc cos (cos e sin £ -+ sin & cos £ cos a)‘

The angle w) is expressed in terms of w; and the intensity of the incident
shock T|, which is equal to the ratio of the pressures PZ/pl at the shock, in the

following manner (ref. 6):




\
, mi=ctgw, Ti=ctgwg

— B+ VB*—4AC
Tr= 24

|
A=s[(v—1)s—(v=—2)](m®+1)—1, v=(+1)/(r—1)

i
B=—(v—Nul?@m+1)—1, C=vismi¢1)—1] | (1.4)
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It should be pointed out that the "plus" in front of the root in equation
(1.4) corresponds to a weak reflection while a "minus' corresponds to a strong
reflection. Finally from the condition that the reflected shock is not per-
pendicular to the upper wing surface, and also from the fact that the planes
of the incident and reflected shocks belong to the same beam of planes (passing
through the line OD) we obtain

cos (e — 8) = (1, + 7,) sin e, (cos O sin § + sin S cos § cosa)i (1.5)

Equations (1.2)-(1.5) give us a relationship associating 7 parameters
MO’ @, 6, €, €, wy, Wy. Therefore three parameters can be assigned indepen-

dently; for example, the geometry of the body (o and §) and the number My. The
fourth parameter € (the slope of the fence) depends on these parameters. We
note that it is impossible to solve the above system of equations in an explicit

form except for the case considered below in Section 3.

2., The region where the considered flows exist may be determined from the
following physical considerations.

(a) The angle of the leading edge must satisfy the inequility

a>arcsin.xil— (2.1)

(b) The wedge angle 6 must be less than some limiting value 64, determined

from equation (1.2) when

: ‘ |
sin’ ¢, = Tﬁ;_l"‘ Chre O MeE—1t +VOa+ DU+ A0 — 1)M’17tf'/1§(7+1/)M1‘] C(2.2)

(e) -In order for a proper reflection to exist it is necessary that the

2

discriminant in equation (1.4) be B® - 4AC = O, which corresponds to W} < Uiy,

where w4y depends on p2/p1 and vy.



(d) From our consideration we do not exclude the case of strong shock
reflection although the realization of strong reflection in practice is doubted
by some investigators (refs. 6 and 7).

Let us assume however that strong reflection of slipping shocks from the
fence may be realized under the condition when the total velocity behind the
reflected shock will be supersonic, i.e., when M3 > 1.

Since it is impossible to solve the equations in explicit form, the boun-
daries of the existing region corresponding to conditions (c) and (d), may be
found only by numerical calculations.

3. It is known that the equation (1l.4) which associates the angles of
incidents and reflection of the shock, has one characteristic solution when
these angles are the same and when they do not depend on the ratio of pressures
but are equal (ref. 6)

- 1\'s
m=m,=m‘=mctg(%r) \ (3.1)

In this case the symmetric reflection of the pressure drop on the oblique
reflected shock is the same as in the case of direct reflection and the solu-
tion depends only on two parameters because for the five unknowns (Mg, @, &, €, E)

there are three equations (1.2), (1.3), (1.5). For this case it is possible to
solve the system in explicit form if M; and ¢ are assigned as the independent

parameters, Then § is determined from (1.2) and we also have

(3.2)

sin e cos (e —§) — (1 4 1)sins - VH-
smE - Vay+tsine—8) = *®%=TIgnecesE 2sinecos g —clgelgh \

As an illustration figure 2 presents the function £ = £ (o) for various M, /147
in the case when y = 1.4 (the angles €, o are given in degrees).

4, The region where the solution exists in the symmetric case for the in-
dependent variables M; and § can be easily determined from conditions (a), (b),

(d) of section 2 and also from the condition

. |
= S -
€ arc sin My

As a result we obtain

arc sih"-];—l <e<e,

(4.1)



where €4 is determined by equation (2.2), and where we also have € = arc tgk+

or ¢ < arc tg k_, where
- 1 =1 V41
ki—‘(‘r—i) . ANN) { 2 V3‘_——'—T My 4

— 1y 1 . v (4.2)
| e e a ) a4

The regions where solutions exist for the case y = 1.4 and v = 1.67, con-~
structed from these conditions, are shown in figure 3. The lines AB and BD
correspond to the condition (4.1), while the line DE corresponds to condition
(4.2). The line FG divides the region of weak (to the left), and strong re-
flections for y = 1.4). It is obtained from the condition (ref. 7)

Palpy =102 (4.3)

It should be pointed out that according to the calculations, condition (d)

is satisfied automatically within the limits of the specified region of exist-
ence,

5. 1If the angle of the sweptback wing is o—0 while M -, but such that

My =My @ > 1, then equations (1.3) and (1.5) are simplified and assume the form

O =Y,m—e—t,

0g=06-4¢

'

The resulting system of equations coincides completely with the system of
equations which describe the flow around a wedge that penetrates a stationary
inclined fence (fig. 4). Thus in this case the known law of plane cross
section is confirmed.

During the specified transition the number of characteristic parameters is
reduced to two (Ml’ 8) but it is nevertheless impossible to obtain the solution

in the explicit form, However when M; are sufficiently large so that M12 sin2

€ 1 (i.e. when we can neglect the initial pressure Pl)’ the solution is sub-

stantially simplified. 1Indeed when

§ = wk = arc ct (Y+l)%
W g8\3 - N

e=%5m-wk, =0, wy = w = wk

we obtain

/148
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which corresponds to the symmetric case. When § # w* we can obtain the solu-
tion in the form of an expansion with respect to the symmetric case in powers
of §, it is only necessary to write the relationship for the incident and re-
flected shock in the form given in reference 7.

For the first two terms of the expansion we have

C—1Ey+1 or +1
=0 — —zﬁgjwlb e=%n—m——zﬂgjﬁﬁ

74+1 e, Yt3r—2
= m+—w§, Wy =0* + —rm 8

L L

where p3/p2 is the ratio of pressures at the reflected shock.
It is of interest to compare the lift force Y, for the BE region of the

wing (fig. 4), which adjoins the fence (taking into account the force acting
on the fence), with the lift force Y, for the KB region of the wing when the

fence is absent. It is easy to see that



Yi _ ptg(e—08)[ . sin § (5.1)
Ys p,cos(6+e)'[s'n(6+8)— cosb}\

As a result of this, expansion in terms of £ gives us
Yi_ 3y—1 4 [ (31—1)(57+1>] 3—1\h
e e (== Y

Let us consider this solution for the case § = O when v -»1. In this case
the region of increased pressure is reduced while the pressure itself increases
in such a way that Yl/Yz'*l. Thus when § = O, M} » = and vy = 1, a concentrated

1ift force occurs at the point where the wing is joined with the fence and this
force is equal to the force which act on the cutoff section of the wing.

We note that the occurence of a substantial concentrated lift force at the
point where the wing joins the fence is difficult to explain within the frame-
work of known Newton's theory for hypersonic flow around bodies and, apparently,
is directly associated with the presence of the strong reflection of the head
shock from the fence. Therefore it is of prime interest to investigate experi-
mentally the established flows at high supersonic velocities. We note that when
v > 1 the additional forces produced by the end fence become compatible with
forces acting on part of the wing cut off by the fence (fig. 5).

We should point out that during hypersonic transition the flow behind the
reflected shock wave remains supersonic. Indeed when M; — » and € = O we have

2 T+1
Mg = 'r—i[ 3y — 1) sin’a _i]\

i.e., in the considered case when o— 0 we obtain M3—*w. Thus during the hyper-

sonic transition we may assume that the strong reflection of the head shock from
the fence is realized.

6. Let us evaluate the drag forces which act on the section of the wing
with the fence, in a hypersonic flow.

We note that when o — O the wave drag X, also tends to zero, while the drag

of the body is determined by the force of friction. In this connection we com-/149
pare the friction force Xfl’ acting on the section of the wing with the fence

(including the friction force acting on the fence), with the friction force
sz acting on the cut-off part of the wing.



To evaluate the forces of friction we use the approxi- & — \

4 & <
mate equation proposed by V. A. Dashkin, according to which | g //
the friction force is given by the following expression when ' e
the boundary layer for the plate is laminar, when M;>>1, 20] A7
[A%
when there is strong heat exchange on the surface of the  hp—
body, and also when the relationship between the coefficient ‘ . l
of viscosity as a function of temperature p ~ T®follows an m/
exponential law:
' y
_ 2 4
Xy = ¢y Ffsput = 1.33 VA/RL F'fs pu*, A=y — 1) MPf (P)le-1 (6.1) .
' Figure 5

Here P is the Prandtl number, F is the area of the plate, p is the density,
u is the flow velocity at the external boundary of the boundary layer, R is the
Reynolds number when the length of the plate is equal to 1.

Substituting the expressions for all of the variables into equation (6.1)
we obtain

X /s 1 4 sin
n_(r —§) 20
sz (pa) tg (e —5) £0S W \
which, in an expanded form, gives us
b.¢ Vor=DG=1 7/, . ' :
An _ Y= —1 2 .
X3 e A

1  27 3—1 YA (I —1Vh_ PP—q+10 _?]
+3’77[T+1 ((37-—1)(7+1)) T (3—1) 213 —1p Va—1Jt
The variation in XfS/XfS as a function of v when € = O is shown in figure

5.

The author expresses his gratitude to V. V. Struminskiy, V. V. Sychev and
V. N. Zhigulov for discussing the results of the present work.
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